Autonomous Guidance Between Quasiperiodic Orbits in Cislunar Space via Deep Reinforcement Learning

Author:

Federici Lorenzo1ORCID,Scorsoglio Andrea1ORCID,Zavoli Alessandro2ORCID,Furfaro Roberto1ORCID

Affiliation:

1. University of Arizona, Tucson, Arizona 85721

2. Sapienza University of Rome, 00184 Rome, Italy

Abstract

This paper investigates the use of reinforcement learning for the fuel-optimal guidance of a spacecraft during a time-free low-thrust transfer between two libration point orbits in the cislunar environment. To this aim, a deep neural network is trained via proximal policy optimization to map any spacecraft state to the optimal control action. A general-purpose reward is used to guide the network toward a fuel-optimal control law, regardless of the specific pair of libration orbits considered and without the use of any ad hoc reward shaping technique. Eventually, the learned control policies are compared with the optimal solutions provided by a direct method in two different mission scenarios, and Monte Carlo simulations are used to assess the policies’ robustness to navigation uncertainties.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3