Affiliation:
1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, 710049 Xi’an, People’s Republic of China
Abstract
A parametric study of hypersonic impinging conical-shock-wave/turbulent-boundary-layer interaction (CSBLI) is carried out at hypersonic high-Reynolds-number conditions (Mach number 6.0, [Formula: see text], based on the freestream momentum boundary-layer thickness and wall viscosity) by means of numerical simulation of the Reynolds-averaged Navier–Stokes (RANS) equations, with the eventual goal of establishing wall temperature effects. Comparison with available experimental data shows that RANS is capable of predicting the main features of hypersonic oblique shock-wave/turbulent-boundary-layer interaction, namely, typical size and distribution of the wall properties. A large number of flow cases, especially at high Reynolds number, were computed to examine the scaling of the heat transfer over a wide range of wall temperatures. As expected, the interaction zone of hypersonic CSBLI is reduced as the wall is cooled. A simple power of heat transfer originally introduced by Back and Cuffel (“Changes in Heat Transfer from Turbulent Boundary Layers Interacting with Shock Waves and Expansion Waves,” AIAA Journal, Vol. 8, No. 10, 1970, pp. 1871–1873) for planar shock-induced interactions is here considered to account for hypersonic CSBLIs, which is found to successfully collapse the data to the distributions obtained for supersonic/hypersonic, cold/hot interactions. The value range of the power exponent [Formula: see text] is within 0.75–0.95.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
National Postdoctoral Program for Innovative Talents, China
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献