Solid-Fuel Ramjet Regression Rate Measurements Using X-Ray Radiography and Ultrasonic Transducers

Author:

Evans Jay V.1ORCID,Reid Brandon T.1ORCID,Gejji Rohan M.1ORCID,Slabaugh Carson D.1ORCID

Affiliation:

1. Purdue University, West Lafayette, Indiana 47907

Abstract

The instantaneous fuel regression rate within a solid-fuel ramjet combustor was characterized using X-ray radiography and ultrasonic transducer measurements. Experiments were performed with cylindrical center-perforated hydroxyl-terminated polybutadiene fuel grains at three mass fluxes ([Formula: see text]) with consistent inlet total temperatures and chamber pressures. Ultrasonic transducer measurements demonstrated changes of web thickness ranging from 7.50 to 9.85 mm and regression rate measurements ranging from 1.35 to [Formula: see text]. The local maxima of change in the web thickness due to flow reattachment and erosive burning were consistently measured with the ultrasonic transducers. Changes in the port radius on the order of 8–9 mm and regression rates of approximately [Formula: see text] were deduced from the X-ray radiography images. The structure of the flow reattachment region was evident in measurements from the X-ray radiography images captured near the combustor entrance, whereas images captured at the midlength of the combustor exhibited more uniform fuel regression profiles. Ultrasonic measurements of change in the web thickness were consistently greater in magnitude relative to X-ray radiography measurements. X-ray radiography imaging allowed for the more accurate measurement of fuel regression with the greatest axial spatial resolution, whereas ultrasonic transducer measurements yielded the greatest radial spatial resolution. The change in web thickness calculated with weight-based techniques yielded smaller-magnitude measurements of change in the web thickness relative to X-ray radiography. The regression rate was largely invariant with the mass flux within the investigated operating regime.

Funder

Office of Naval Research

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3