Numerical Investigation of Film Coefficient Approximation for Chemically Reacting Boundary-Layer Flows

Author:

Cooper Justin1,Salazar Giovanni2,Martin Alexandre3ORCID

Affiliation:

1. NASA Johnson Space Center, Houston, Texas 77058

2. Corvid Technologies, Mooresville, North Carolina 28117

3. University of Kentucky, Lexington, Kentucky 40506

Abstract

Aerothermal analysis of spacecraft planetary entry is heavily dependent on heritage engineering models. The film coefficient heat transfer model examined in this paper estimates the convective heating to the vehicle for a laminar, dissociated, chemically reacting boundary layer for an Earth atmosphere. This model requires information about the vehicle and flowfield for a given trajectory point and estimates a proportional relationship between enthalpy potential and convective heat flux. In practice it is the aerothermal engineer who must decide which assumptions are appropriate for his/her application. This work looks at numerous CFD simulations for an arbitrary, axisymmetric flight vehicle to analyze the relative importance of both the mass and energy constraints imposed at the wall boundary, as well as the effect of various diffusion models. Within the subset of tested energy boundary conditions, it is found that the most desirable energy boundary condition is the radiative equilibrium boundary condition, which permits conservative estimates of convective heat flux, but also generates flowfield-dependent spatial thermal distributions along the surface. Other key findings are presented in an effort to make the film coefficient engineering model readily available to design engineers across industry.

Funder

Johnson Space Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Reference39 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3