Modular Approach for Online Vertical Obstacle Detection

Author:

Flanigen Paul1ORCID,Atkins Ella2ORCID,Sarter Nadine1

Affiliation:

1. University of Michigan, Ann Arbor, Michigan 48109

2. Virginia Tech, Blacksburg, Virginia 24061

Abstract

Poles, towers, and other vertical structures are a significant hazard to low-altitude flight operations. Three-dimensional sensors have the ability to perceive these objects; however, detection is hindered by the overwhelming preponderance of returns from other surfaces. This paper first evaluates existing approaches to finding vertical structures. Then the paper proposes a fast, modular process that efficiently removes extraneous points and automatically distills remaining data to find significant vertical structures with application to dense and sparse datasets. We apply our approach to the analysis of 200 million LiDAR points from a variety of real-world scenes. With our algorithm, the average density of identified pole returns for communication towers increases from 0.1% to over 60%. Finding other vertical structures is more difficult, but prevalence generally increases for these objects also.

Funder

Omar Nelson Bradley Fellowship

U.S. Army

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3