Temporal Precursor Discovery Using Long Short-Term Memory with Feature Attention

Author:

Deng Chuhao1ORCID,Choi Hong-Cheol1ORCID,Park Hyunsang1,Hwang Inseok1ORCID

Affiliation:

1. Purdue University, West Lafayette, Indiana 47907

Abstract

The continuous growth of demand on commercial airlines has made it crucial to guarantee the safety of airspace operations. Although adverse events are rare, once they happen, they can cause unpredictable risky factors and degrade airspace efficiency. Thus, studying historical air traffic data to discover precursors, features, or events that contribute to the occurrence of the adverse event in the future is important and has gained interest in recent years. In this paper, a novel and real-time applicable temporal precursor discovery (TPD) framework based on the long short-term memory neural network and the feature attention mechanism is proposed. The feature attention mechanism enables the framework to pay attention to certain features at a certain time, and the attention score is defined as the temporal precursor. The temporal precursor reflects the rationale behind the neural network’s prediction at each time step, providing a data-driven explanation of how the adverse event occurs. The proposed TPD framework was tested with real air traffic data and weather data recorded at Incheon International Airport in South Korea in 2019.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3