Affiliation:
1. Purdue University, West Lafayette, Indiana 47906
Abstract
Urban air mobility (UAM) systems are characterized by the heterogeneity of participating aerial vehicles (AVs). Participating AVs are expected to cooperate with each other while maintaining flexibility in individual missions and reacting to the possibility of cyberattacks and security threats. In this paper, we focus on the vulnerabilities of the UAM cyberphysical system against distributed denial-of-service (DDOS) cyberattacks. We develop a resilient control strategy for the AVs navigating through the UAM airspace to mitigate the effect of DDOS cyberattacks. A graph-theoretic vulnerability metric is proposed. Each AV can compute its vulnerability against DDOS cyberattacks in a fully distributed manner using this metric. Based on this computed metric, the AVs self-organize to minimize collision risk in the operating airspace after assessing self-vulnerability. This reconfiguration is also carried out in a fully distributed manner. The proposed resilient control is proven to reduce vulnerability in a probabilistic manner. This reduced vulnerability holds against DDOS cyberattacks with a known attack budget.
Funder
NASA University Leadership Initiative (ULI) Grant
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献