Dynamic Machine Learning Global Optimization Algorithm and Its Application to Aerodynamics

Author:

Zhang Zi-Qing1,Li Pei-Jing1,Li Qing-Kuo1,Dong Xu1,Lu Xin-Gen1,Zhang Yan-Feng1

Affiliation:

1. Chinese Academy of Sciences, 100080 Beijing, People’s Republic of China

Abstract

A dynamic extreme gradient boosting (XGBoost) and MaxLIPO trust region parallel global optimization algorithm is proposed in this paper, and it is applied to the turbomachinery blade aerodynamic optimization coupled with an in-house graphics processing unit (GPU) heterogeneous accelerated compressible flow solver, AeroWhale. The algorithm combines an accurate machine learning regression model, an efficient nongradient optimization method with no hyperparameters, a dynamic update regression strategy, and double convergence criteria to achieve high optimization accuracy and efficiency. The optimization results on the test function indicate that the number of objective function calls is less than 2% of that required by a traditional genetic algorithm, which greatly reduces the optimization time. The dynamic XGBoost model ensures that the regression model accuracy near the optimum is relatively high, which is attributed to the update strategy. The error between the optimal value identified by the proposed algorithm and the theoretical value is only 0.52% after several objective function calls. Finally, the aerodynamic optimization algorithm is applied to the LS89 high-pressure turbine, and the total pressure loss is reduced by 13.16%. The sensitivity of each optimization feature to the objective function is determined, showing that the blade suction surface control point near the trailing edge has the greatest impact on aerodynamic performance.

Funder

K.C.Wong Education Foundation

National Science and Technology Major Project

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3