Unsteady Aeroelastic Characterization and Scaling Relations of Flexible Membrane Wings

Author:

Li Guojun1,Kumar Jaiman Rajeev2

Affiliation:

1. Xi’an Jiaotong University, 710049 Xi’an, People’s Republic of China

2. University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada

Abstract

We present a numerical study to characterize nonlinear unsteady aeroelastic interactions of two-dimensional flexible wings at high angles of attack. The coupled fluid–flexible wing system is solved by a body-fitted variational aeroelastic solver based on the fully coupled Navier–Stokes and nonlinear structural equations. Using the coupled fluid–structure analysis, this study is aimed to provide physical insight and correlations for the aeroelastic behavior of flexible wings in the parameter space of the angle of attack and the aeroelastic number. The phase diagrams of the aerodynamic performance are established to obtain the envelope curves of the optimal performance and determine the transition line of the drag variation. The effects of the angle of attack and the aeroelastic number on the aeroelastic behaviors are systematically examined. The time-averaged membrane deformation is positively correlated with a nondimensional number, the so-called Weber number. A new scaling relation is proposed based on the dynamic equilibrium between the aerodynamic force fluctuation and the combined inertia–elastic fluctuation. The unsteady aerodynamic force can be adjusted by manipulating the membrane vibration, the mass ratio, the Strouhal number, and the aeroelastic number. The numerical investigations provide design guidelines and have the potential to enhance the maneuverability and flight agility of micro air vehicles with flexible wing structures.

Funder

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3