Automatic Borescope Damage Assessments for Gas Turbine Blades via Deep Learning
Author:
Affiliation:
1. University of Cambridge
2. Imperial College London
Publisher
American Institute of Aeronautics and Astronautics
Reference34 articles.
1. Common failures in gas turbine blades
2. Taxonomy of Gas Turbine Blade Defects
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of artificial intelligence in turbomachinery aerodynamics: progresses and challenges;Artificial Intelligence Review;2024-07-30
2. Automatic Defect Recognition and Localization for Aeroengine Turbine Blades Based on Deep Learning;Aerospace;2023-02-14
3. A Deep-Learning-Based Approach for Aircraft Engine Defect Detection;Machines;2023-02-01
4. Aero-engine Blade Defect Detection: A Systematic Review of Deep Learning Models;IEEE Access;2023
5. Adaptive parameters based borescope image-related damage detection of aeroengine;Journal of Image and Graphics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3