Design of Hybrid-Laminar-Flow-Control Wing and Suction System for Transonic Midrange Aircraft

Author:

Prasannakumar Adarsh1ORCID,Sudhi Anand1ORCID,Seitz Arne2,Badrya Camli3

Affiliation:

1. Technical University of Braunschweig, 38108 Braunschweig, Germany

2. DLR, German Aerospace Center, 38108 Braunschweig, Germany

3. University of California, Davis, Davis, California 95616

Abstract

Hybrid laminar flow control (HLFC) has shown significant promise in the viscous drag reduction of aircraft. However, the use of HLFC for commercial applications requires further simplification. The current study proposes tools for the conceptual design of transonic HLFC wing and suction system. In the first part of the study, airfoil sections for the wing are optimized for minimum total drag using a multi-objective genetic algorithm approach at six spanwise locations. The induced drag of the wing is estimated using a vortex lattice method solver. In the second part of the study, suction system design is performed using ASPeCT, an in-house solver for HLFC system design. A simplified inner structure for the suction system is proposed, which can be integrated easily within the wing structure. A total drag penalty approach is proposed to establish a tradeoff between matching the target suction distribution and the complexity of the suction system. Finally, the additional weight and off-design performance of the suction system are analyzed for a [Formula: see text] change in the design lift coefficient. A maximum fuel reduction of 7% can be expected with the HLFC system taking into account the additional weight added and power off-take from the engine.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3