Toward an Efficient Method for F-16 Limit Cycle Oscillation Prediction

Author:

Kariv Daniel1,Kunz Donald L.2ORCID,Iovnovich Michael1

Affiliation:

1. Israeli Air Force, Tel Aviv, Israel

2. Air Force Institute of Technology, Wright–Patterson Air Force Base, Ohio 45433

Abstract

This study presents the development and validation of a computationally efficient prediction framework for the well-known nonlinear F-16 limit cycle oscillation (LCO) phenomenon. The framework relies on a simple physical working model that has been suggested and demonstrated in the past according to which LCO is primarily a flutter instability that is bounded by the existence of nonlinear structural damping (NSD), although potentially affected by nonlinear aerodynamic effects as well. In the framework developed herein, the NSD model is derived and calibrated using a novel method that simplifies the process and allows applicability of the derived NSD models for multiple aircraft download cases. Good LCO prediction capabilities are obtained using the suggested method in terms of LCO levels and trends with flight conditions, as demonstrated using four F-16 test configurations. This framework also allows several practical benefits, which makes it particularly suitable for industrial-level applications.

Funder

Engineer and Scientist Exchange Program

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3