Combined Cycle Nuclear System Architecture for Crewed Mars Spacecraft Propulsion and Power

Author:

Maydan Jack V.1,Nabity James A.1ORCID

Affiliation:

1. University of Colorado Boulder, Boulder, Colorado 80309

Abstract

Nuclear thermal propulsion can potentially reduce the time of flight and spacecraft system mass needed for human spaceflight beyond cislunar space. This nuclear propulsion system has comparable thrust capability to chemically impulsive systems, which at about twice the specific impulse, can double the delta-velocity ([Formula: see text]) for the same propellant mass. However, the canonical problem for nuclear propulsion has always been that its benefits are shadowed by low technology readiness of a complex system. This paper describes a combined cycle nuclear thermal rocket (CCNTR) system architecture for propulsion and electrical power that comprises a 42-MWt-capable nuclear reactor core to provide 9.4 kN thrust on demand at a specific impulse of 940 s. The liquid hydrogen propellant flow through the rocket chamber cools the reactor during burns, thereby producing thrust while concurrently rejecting waste heat to space. The reactor also produces up to 100 kWe power for the spacecraft, eliminating the need for solar power generation and averting challenges associated with restarting a cold reactor for propulsive burns. Radiators reject the waste heat from electrical power production. Earth-to-Mars orbital transfers less than 100 days appear feasible assuming 680,000 kg of liquid hydrogen propellant and a vehicle dry mass of 83,000 kg that includes the 13,000 kg CCNTR system. Together, these results suggest that a CCNTR could be most promising to enable crewed missions to Mars.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Reference36 articles.

1. “NASA’s Exploration Systems Architecture Study,” NASA TM-2005-214062, Nov. 2005.

2. Thermal Stability of Energetic Hydrocarbon Fuels for Use in Combined Cycle Engines

3. “Human Exploration of Mars Design Reference Architecture 5.0,” NASA SP-2009-566, July 2009.

4. Fast Transits to Mars Using Electric Propulsion

5. BorowskiS. K. “The Rationale/Benefits of Nuclear Thermal Rocket Propulsion for NASA’s Lunar Space Transportation System,” AIAA Paper 1991-2052, Sept. 1991.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3