Automated Plume Sentry Observations During International Space Station Thermal Control System Venting

Author:

Maldonado Carlos. A.1ORCID,Ketsdever Andrew. D.2,Balthazor Richard D.3,Neal Parris C.3,Wilson Gabriel R.3,McHarg Matthew. G.3,Osiander Robert4,Adams Richard J.5

Affiliation:

1. Los Alamos National Laboratory, Los Alamos, New Mexico 87545

2. Oregon State University–Cascades, Bend, Oregon 97702

3. U.S. Air Force Academy, Colorado 80840

4. Johns Hopkins University, Applied Physics Laboratory, Baltimore, Maryland 97702

5. Barron Associates, Inc., Charlottesville, Virginia 22901

Abstract

Contamination from outgassed materials, venting, leaks, and impinging thruster plumes can cause deleterious effects to sensitive experiments on the International Space Station. In low Earth orbit, intermolecular collisions between neutral contaminants and ions in the ambient ionospheric environment result in an elevation in the local charged particle density through a process called charge exchange (CEX). Of particular concern to spacecraft engineers is the acceleration of these ionized neutrals to sensitive negatively charged spacecraft surfaces. The increase in plasma density due to CEX can be readily measured using plasma diagnostics such as electrostatic energy analyzers. These instruments are capable of monitoring charged particle flux and are sensitive enough to measure small changes in local density, thus allowing for the detection of CEX contaminants. The automated plume sentry (APS) is one such instrument, and it has successfully detected CEX plasma generated by the planned ammonia venting of the external active thermal control system. The data collected by the APS will support the development of improved computational models to predict the propagation of outgassed materials and plumes in the ionosphere and complex gas–surface interactions resulting in spacecraft surface contamination.

Funder

Air Force Research Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3