Simulating Nanofluid Forced Convection Flow by Thermal Lattice Boltzmann Approach

Author:

Ben Ltaifa Kaouther1,D’Orazio Annunziata2,Naji Hassane3ORCID,Hammouda Sihem1,Mabrouk Riheb1,Dhahri Hacen1

Affiliation:

1. University of Monastir, National School of Engineers of Monastir, Laboratory of Thermal and Energy Systems Studies (LESTE), Rue Ibn El Jazzar, 5035 Monastir, Tunisia

2. Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Università di Roma, Via Eudossiana 18, Roma 00184, Italy

3. Univ. Artois, IMT Nord Europe, Junia, Univ. Lille, ULR 4515, Laboratoire de Génie Civil et géo-Environnement (LGCgE), F-62400, Béthune, France

Abstract

Improving heat transfer using nanofluids has proven to be a promising option with many practical applications. However, the behavior of particles conveying energy for thermal transport depends closely on the dimensions of systems and channels where the flow evolves. Thereby, any fine thermal analysis should lean on a mesoscale approach applied at a microscale level. To this end, the multi-distribution functions–thermal lattice Boltzmann method has been taken to deal with convective heat flow and entropy generation in a channel with isothermal top–bottom walls and filled with a nanofluid (Cu/water). It was extended to simulate the flow governed by the Brinkman–Forchheimer Darcy model using the local thermal equilibrium assumption. The effects of nanoparticles’ volume fraction, Darcy number, porosity, heat capacity ratio and thermal conductivity ratio on heat transfer, entropy generation, average Nusselt number, and Bejan number are investigated. Among the salient results, it can be stated that the nanoparticles’ volume fraction increases heat transfer and entropy generation, but such a propensity can be affected by the porous medium permeability used. To sum up, the findings confirm the potential of the multi-distribution functions–lattice Boltzmann formalism to tackle forced nanofluid flows with heat transfer in porous media.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3