Computational Analysis and Regression Laws for Nozzle Erosion Prediction in Hybrid Rockets

Author:

Rotondi MarcoORCID,Migliorino Mario TindaroORCID,Bianchi DanieleORCID,Kamps Landon,Nagata Harunori

Abstract

The erosion of the nozzle throat can represent one of the major limitations against the future widespread use of hybrid rocket engines (HREs) in the space industry. In fact, nozzle erosion in HREs can be more severe and harder to predict than in solid rockets due to the higher concentration of oxidizing species in the combustion products and to mixture ratio shifts and/or throttling. Therefore, an accurate understanding of the erosion phenomenon is of fundamental importance for the technological advancement of HREs. This work is focused on the investigation of graphite nozzle erosion in HREs burning high-density polyethylene with two different oxidizers, oxygen and nitrous oxide. First, the results of a computational fluid dynamics parametric analysis are used to derive closed-form regression laws for the rapid estimation of nozzle throat erosion and wall temperature depending on chamber pressure and mixture ratio. Then, a one-dimensional transient heat conduction solver is loosely coupled with the aforementioned regression laws, allowing to reconstruct the transient heating process within the solid. The obtained numerical results are validated against experimental data. Finally, the effect of gas-phase reactions on the heterogeneous reactions occurring at the nozzle surface is highlighted when moving from fuel-rich to oxidizer-rich conditions.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3