Semi-Intrusive Stochastic Galerkin Finite Element Method for Adjoint-Based Optimization Under Uncertainty

Author:

Boopathy Komahan1ORCID,Kennedy Graeme J.1ORCID

Affiliation:

1. Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

The stochastic Galerkin method for the propagation of probabilistically modeled uncertainties can be difficult to apply in practice due to its formulation and the challenge of creating a computational infrastructure to support it. To address these challenges, this work proposes a sampling-based stochastic Galerkin method that leverages existing deterministic analysis and adjoint-based derivative implementations. The proposed formulation is semi-intrusive since it is implemented using an existing deterministic framework, requiring only the numerical sampling of the deterministic residuals, Jacobians, boundary conditions, and adjoint implementations at nodes in the probabilistic domain. The software architectures to support stochastic generalizations of the deterministic finite element frameworks are presented. This proposed approach is demonstrated using a finite element framework for flexible multibody dynamics problems. Finally, the semi-intrusive implementation of the stochastic Galerkin method is used to demonstrate gradient-based optimizations of flexible multibody dynamics systems in the presence of probabilistically modeled uncertainties.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3