Data-Driven Diagnosis of Multicopter Thrust Fault Using Supervised Learning with Inertial Sensors

Author:

Kim Taegyun1ORCID,Kim Seungkeun1ORCID,Shin Hyo-Sang2ORCID

Affiliation:

1. Chungnam National University, Daejeon KS015, Republic of Korea

2. Cranfield University, Cranfield, England MK43, United Kingdom

Abstract

This study proposes a data-driven fault diagnosis for multicopter unmanned aerial vehicles that uses the principal direction vector of inertial measurement unit (IMU) sensor signals calculated by principal component analysis. The main idea comes from the fact that a normal sphere-shaped distribution of the sensor data changes to a specific elliptical shape under a certain thrust fault situation. The fault diagnosis is based on classification and regression using supervised learning with the gyroscope and accelerometer datasets of an IMU. We analyze the performance of the proposed approach by depending on different learning algorithms. To verify the diagnostic performance, ground experiments with a hexacopter on the gimbaled jig are performed for various cases of damaged propellers. Then, the applicability of the proposed data-driven fault diagnosis is confirmed by analyzing the accuracy of the fault’s location and degree.

Funder

National Research Foundation of Korea

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator;Journal of Intelligent & Robotic Systems;2024-09-03

2. Data-Driven Fault Detection and Isolation for Quadrotor Using Sparse Identification of Nonlinear Dynamics and Thau Observer;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

3. Thrust Fault Diagnosis Using Extended Kalman Filter Considering Dynamics of Lift-Cruise UAV;2024 International Conference on Control, Automation and Diagnosis (ICCAD);2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3