Flow Response of a Laminar Shock–Boundary Layer Interaction to Prescribed Surface Motions

Author:

Fields James L.1,Barnes Caleb J.2,McNamara Jack J.1,Gaitonde Datta V.1

Affiliation:

1. The Ohio State University, Columbus, Ohio 43210

2. Air Force Research Laboratory, Wright–Patterson Air Force Base, Ohio 45433

Abstract

The response of an impinging laminar shock–boundary layer interaction (SBLI) to prescribed surface motions is investigated numerically at [Formula: see text], [Formula: see text], and a shock-associated pressure ratio of 1.5. Parametric sweeps over classical standing and traveling mode shapes are considered at low-, moderate-, and high-frequency conditions for fluid–structure interaction. The specific values are chosen based on compliant panel deformations and frequencies reported in the literature. At low surface oscillation frequencies, the SBLI responds to the deformations in a quasi-steady fashion, with standing wave forcing displaying both breathing and sloshing of the separated region depending on structural mode shape. As the oscillation frequency is increased, the flow transitions to an unsteady response with pronounced separation bubble undulations in time. Higher-order modes and frequencies lead to the largest reductions in the time-mean separation bubble size, more so with traveling surface waves. Modal decompositions show that pressure fluctuations, which arise due to dynamic interaction with the surface, persist downstream and increase in amplitude with the surface oscillation frequency.

Funder

Air Force Office of Scientific Research

National Defense Science and Engineering Graduate

Air Force Research Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3