Analysis and Testing of a Launch-Vehicle-Like Composite Conical–Cylindrical Shell

Author:

Tillotson Rudd Michelle1,Schultz Marc R.2,Gardner Nathaniel W.2,Kosztowny Cyrus J. R.2,Bisagni Chiara3

Affiliation:

1. NASA Marshall Space Flight Center, Huntsville, Alabama 35812

2. NASA Langley Research Center, Hampton, Virginia 23681

3. Politecnico di Milano, 20156 Milan, Italy

Abstract

Launch-vehicle shell structures, which can be composed of both cylindrical and conical sections, are known to be susceptible to buckling due to their large radius-to-thickness ratios. Advancements in composite manufacturing and numerical methods have enabled designers to consider more nontraditional shapes, such as connecting the conical and cylindrical sections with a toroidal transition to create a single-piece conical–cylindrical shell. This single-piece construction eliminates the need for a stiff, heavy interface ring between sections and has the potential to reduce mass. To better understand the buckling behavior of a composite conical–cylindrical shell, a laboratory-scale article was designed, fabricated, and tested. Before the test, a finite element model that included thickness variations and radial imperfections was created. The test article buckled elastically at 251.8 kN, approximately 8.8% higher than the predicted buckling load of 231.4 kN. Because the test article buckled elastically, the buckling test was repeated. The buckling load measured from the second test was within 1% of that from the first test. Continued research on conical–cylindrical structures has the potential to expand the design space for launch-vehicle structures and lead to improved designs and reduced mass.

Funder

NASA MSFC Technical Excellence Fund

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3