Data-Driven Bayesian Inference for Stochastic Model Identification of Nonlinear Aeroelastic Systems

Author:

McGurk Michael1,Lye Adolphus2,Renson Ludovic3,Yuan Jie4

Affiliation:

1. University of Strathclyde, Glasgow, Scotland G1 1XJ, United Kingdom

2. National University of Singapore, Singapore S138602, Republic of Singapore

3. Imperial College London, London, England SW7 2AZ, United Kingdom

4. University of Southampton, Southampton, England SO17 1BF, United Kingdom

Abstract

The objective of this work is to propose a data-driven Bayesian inference framework to efficiently identify parameters and select models of nonlinear aeroelastic systems. The framework consists of the use of Bayesian theory together with advanced kriging surrogate models to effectively represent the limit cycle oscillation response of nonlinear aeroelastic systems. Three types of sampling methods, namely, Markov chain Monte Carlo, transitional Markov chain Monte Carlo, and the sequential Monte Carlo sampler, are implemented into Bayesian model updating. The framework has been demonstrated using a nonlinear wing flutter test rig. It is modeled by a two-degree-of-freedom aeroelastic system and solved by the harmonic balance methods. The experimental data of the flutter wing is obtained using control-based continuation techniques. The proposed methodology provided up to a 20% improvement in accuracy compared to conventional deterministic methods and significantly increased computational efficiency in the updating and uncertainty quantification processes. Transitional Markov chain Monte Carlo was identified as the optimal choice of sampling method for stochastic model identification. In selecting alternative nonlinear models, multimodal solutions were identified that provided a closer representation of the physical behavior of the complex aeroelastic system than a single solution.

Funder

EPSRC Doctoral Training Partnership

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3