Aerodynamic Identification and Control Law Design of a Missile Using Machine Learning

Author:

Yan Lang1,Chang Xinghua2,Wang Nianhua3,Zhang Laiping2,Liu Wei1,Deng Xiaogang4

Affiliation:

1. National University of Defense Technology, 410073 Changsha, People’s Republic of China

2. National Innovation Institute of Defense Technology, 100071 Beijing, People’s Republic of China

3. China Aerodynamics Research and Development Center, 621000 Mianyang, People’s Republic of China

4. Academy of Military Sciences, 100091 Beijing, People’s Republic of China

Abstract

The new generation of air vehicle is confronted with a more intricate environment and challenging missions, which puts forward higher requirements for the flight control system. In this study, the aerodynamic identification and control law design based on machine learning for a missile configuration is investigated through numerical simulations. The missile pitch and elevator deflection are realized via the combination of a rigid dynamic grid method and an overlapping grid technology, while the computational fluid dynamics/rigid body dynamics (CFD/RBD) strong coupling method is implemented to simulate the unsteady flows associated with the motion of the missile. Firstly, the aerodynamic data of the missile are gathered through forced pitching motion involving elevator deflection, and an aerodynamic model is constructed using a deep neural network to identify the aerodynamic moment with only a small number of unsteady aerodynamic data. Then, the accuracy and fidelity of the model are checked with the open-loop control law. Afterward, a missile pitch control law is generated through deep reinforcement learning based on the aerodynamic model, which enables the realization of a robust and exact angle-of-attack control process. Finally, the control law is transferred to a numerical environment and numerical virtual flight based on CFD is conducted, which demonstrates that stable control can be maintained even in continuous maneuvering. This study verifies the possibility of applying a deep neural network to air vehicle aerodynamic identification and deep reinforcement learning to a complicated flight control law design with excellent generalization ability. Machine learning is expected to play a significant role in the design and research for the novel generation of air vehicle.

Funder

National Key Project

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3