Qualification of Avionic Software Based on Machine Learning: Challenges and Key Enabling Domains

Author:

Vidot Guillaume1ORCID,Gabreau Christophe2,Ober Ileana1,Ober Iulian3ORCID

Affiliation:

1. IRIT, Université de Toulouse, Toulouse 31062, France

2. Airbus Opération S.A.S, Toulouse 31060, France

3. Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse 31055, France

Abstract

Advances in machine learning (ML) open the way to innovating functions in the avionic domain, such as navigation/surveillance assistance (e.g., vision-based navigation, obstacle sensing, virtual sensing), speech-to-text applications, autonomous flight, predictive maintenance, and cockpit assistance. Current standards and practices, which were defined and refined over decades with classical programming in mind, do not, however, support this new development paradigm. This paper provides an overview of the main challenges raised by the use of ML in the demonstration of compliance with regulatory requirements (i.e., software qualification) and an overview of literature relevant to these challenges, with particular focus on the issues of robustness, provability, and explainability of ML results.

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3