Multiple Diagnostics of Hybrid Rocket Ignition and Effect of Hypergolic Additive Granulometry

Author:

Dumas Benoît1,Jobin Olivier1ORCID,Robert Étienne1

Affiliation:

1. Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada

Abstract

The ignition delay and surface-temperature evolution of ammonia-borane-doped paraffin wax exposed to white fuming nitric acid are measured in oxidizer-drop tests. The ammonia borane granulometry is varied to investigate the limits of hypergolic ignition and its underlying mechanisms. High-speed visible, Schlieren, and midinfrared optical systems are used simultaneously to observe the phenomena occurring between the first contact and the appearance of a flame. The experiments reveal the usefulness of both Schlieren and midinfrared high-speed imaging as diagnostic tools for hybrid hypergolic experiments, specifically for the detection of preignition events not observable through visible light emission. A strong relationship is found between the granulometry of the ammonia-borane additive and the ignition delay of the fuel pellets. At 25% ammonia borane by weight, pellets made with a granulometry of [Formula: see text] ignited in 15.4 ms, whereas those made with a granulometry of [Formula: see text] ignited in 60.1 ms on average. Granulometry also affects preignition phenomena such as gas-release velocity and surface-temperature evolution. These results reveal that the acid drop acts as a heat sink for the hypergolic ignition of the hybrid rocket fuel and that a minimum additive particle size is needed to avoid quenching.

Funder

Canadian Space Agency

Natural Sciences and Engineering Research Council of Canada

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3