1. CO2enhanced by 2.00 134 O + H2H + OH 3.87 ×1042.7 3152.3 18 135 O + H2O2OH + HO29.63 ×1062.0 2014.2 18 136 O + HCOH + CO23.00 ×10130.0 0.0 18 137 O + HCOOH + CO 3.00 ×10130.0 0.0 18 138 O + HO2OH + O22.00 ×10130.0 0.0 18 139 O + NNO++ e 5.30 ×10120.0 31900.0 33 140 O + OO2++ e 1.1 ×10130.00 80600. 38 141 O++ NON++ O21.4 ×1051.90 15300. 38 142 O++ N2N2++ O 9.1 ×10110.36 22800. 38 143 O+2 + NN++ O2
2. 70 ×10130.1 28600.0 38 144 O2++ OO2 + O+4.0 ×1012-0.09 18000.0 33 145 O2 + C+O2++ C 1.0 ×10130.00 9400.0 33 146 O2+ MO + O + M 2.00 ×1021-1.5 59500.0 8
3. C, C+enhanced by 5.00 147 OH + CH + CO 5.00 ×10130.0 0.0 18 148 OH + C2H2CH3+ CO 4.83 ×10-44.0 -1007.1 18 149 OH + CHH + HCO 3.00 ×10130.0 0.0 18 150 OH + CH2CH + H2O 1.13 ×1072.0 1510.7 18 151 OH + CH3CH2+ H2O 5.60 ×1071.6 2729.3 18 152 OH + CH4CH3+ H2O 1.37 ×1062.2 1350.0 39 153 OH + COH + CO24.76 ×1071.2 35.2 18 154 OH + C2H2C2H + H2O 3.37×1072.00 7049.8 18 155 OH + H2H + H2O 2.16 ×1081.5 1727.2 18 156 OH + H2O2HO2+ H2O 2.00 ×10120.0 215.0 18 157 OH + HCOH2O + CO 5.00 ×10130.0 0.0 18 158 OH + HO2O2+ H2O 1.45 ×10130.0 -251.8 18
4. The hypersonic aerothermodynamic CFD code used to analyze the chemistry model is LeMANS, a finite volume Navier-Stokes solver currently being developed at The University of Michigan.43-46The code assumes that the rotational and translational energy modes of all species can be described by their respective temperatures Trand T, and that the vibrational energy mode and electronic energy mode of all species, as well as the free electron kinetic energy, can be described by a single temperature, Tvee.47Theviscousstresses are modeled assuming a Newtonian fluid, using Stokes' hypothesis, and the species mass diffusion fluxes are modeled using a modified version of Fick's law. Mixture transport properties are calculated using one of two models; the first uses Wilke's semi-empirical mixing rule with species viscosities calculated using Blottner's