Antiwindup Compensation for Unstable Rigid-Body Systems with Quantized and Saturated Inputs

Author:

Richards Christopher M.1,Turner Matthew C.2

Affiliation:

1. University of Louisville, Louisville, Kentucky 40292

2. University of Southampton, Southampton, England SO17 1BJ, United Kingdom

Abstract

It is well known that actuator saturation can cause destabilization and degradation in performance; similar problems are encountered when actuation is quantized. This study proposes the design of an antiwindup compensator for systems with actuators that are limited to a finite number of quantization levels. This combination of discrete-level actuation and saturation poses a unique antiwindup problem that has not yet been solved. To surmount this combined issue, an antiwindup compensator is proposed, which provides ultimate boundedness of the system state within a prescribed region and guarantees that the state does not stray outside a larger compact set. The use of shifted ramp functions enables a less conservative bound on the control-signal error, which yields significantly lower [Formula: see text] gain bounds compared to a standard sector-bound antiwindup design approach. A numerical simulation example illustrates the effectiveness on a rigid-body system, which inspired this study.

Funder

Engineering and Physical Sciences Research Council

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3