Family of Skeletal Reaction Mechanisms for Methane–Oxygen Combustion in Rocket Propulsion

Author:

Liberatori Jacopo1ORCID,Malpica Galassi Riccardo1,Bianchi Daniele1ORCID,Nasuti Francesco1ORCID,Valorani Mauro1,Paolo Ciottoli Pietro1

Affiliation:

1. University of Rome “La Sapienza,” 00184 Rome, Italy

Abstract

Analyzing methane–oxygen rocket propellant combinations requires suitable modeling of the major chemical reaction processes. Although several detailed kinetic mechanisms for methane oxidation in air exist, most do not reproduce the reaction pathways of high-pressure methane–oxygen combustion, typical of liquid rocket engines. Moreover, when large-scale computational fluid dynamics simulations are pursued, detailed reaction schemes are not computationally viable. In the present study, we identify a reliable detailed kinetic scheme for liquid rocket applications, and then we perform a wide reduction campaign leveraging computational singular perturbation theory. Enforcing various reduction targets, we obtain a family of seven skeletal schemes, including 11–39 species. Each mechanism targets different combustion modes, namely, homogeneous ignition, complex flows and flame extinction, premixed burning, reaction processes under intense turbulent mixing, and largely off-stoichiometric mixtures, typical of rocket engine preburners. We test the skeletal mechanisms against meaningful validation targets, attaining appreciable predictive accuracy compared with the detailed parent scheme. We expect the proposed family of skeletal schemes to offer a wide and flexible range of solutions—in terms of size, accuracy, and dominant combustion mode—for performing large-scale yet cost-affordable computational fluid dynamics of methane–oxygen flames under rocket-engine-relevant conditions.

Funder

European Space Agency

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Reference96 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3