Instability and Transition of Hypersonic Boundary Layer on a Blunted Delta Wing

Author:

Yao Shiyong1,Duan Yi1,Tian Chuan1,Li Siyi1,Yang Pan1,Duan Hui Shen1

Affiliation:

1. Science and Technology on Space Physics Laboratory, 100076 Beijing, People’s Republic of China

Abstract

The instability and transition of hypersonic boundary layer on a blunted delta wing is performed by numerical simulation of experiments conducted in the quiet wind tunnel. Disturbances are calculated using linear stability theory to obtain the integrated disturbance growth rates and amplification factors from laminar steady base flows. Comparisons are made between the results of the stability analysis and the experimentally measured transition characteristics. The results show that the generalized inflections existing in velocity profiles reveal both the streamwise instability and crossflow instability of the boundary layer on the delta wing. In the parameter spaces of frequency and wave number, there is only one unstable region in which the first-mode and second-mode waves are integrated with each other at [Formula: see text] angle of attack, whereas the unstable regions of the first-mode and second-mode waves are separately distributed at angle of attack of [Formula: see text]. The numerically predicted [Formula: see text] factor distribution is in good agreement with the measured transition front, and the [Formula: see text] factor is about 3 when boundary-layer transition occurs. The low-frequency unstable waves with about 25–30 kHz play a key role in dominating the boundary-layer transition of the delta wing.

Funder

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3