Comparison of Corcos-Based and Experimentally Derived Coherence Factors for Buffet Forcing Functions

Author:

Soranna Francesco1,Heaney Patrick S.1,Sekula Martin K.1,Piatak David J.1,Ramey James M.1

Affiliation:

1. NASA Langley Research Center, Hampton, Virginia 23681

Abstract

In this paper, high-spatial-resolution unsteady pressure-sensitive paint (UPSP) data are utilized to compare two methods for panel buffet forcing function (BFF) estimation for the Space Launch System (SLS). Such methods are based on discrete pressure measurements within a panel but employ coherence factors to account for partially correlated fluctuating pressures across the whole panel. In one method, coherence factors are derived based on the Corcos model, whereas the second method utilizes experimentally derived coherence factors. To simulate discrete measurements using UPSP data, suitable subsets of the data are extracted. When full UPSP resolution is retained, UPSP data provide a benchmark to assess discrete-measurement-based methods. The analysis focuses on the peak SLS buffet environment located downstream of the forward attachment hardware (FAH) between the core stage and solid rocket boosters. Trends of the Corcos-based and experimentally derived coherence factors are in reasonable agreement with the benchmark. However, at certain frequencies, experimentally derived coherence factors are sensitive to the separation distance between pressure measurements utilized to compute coherence lengths. Such sensitivity originates from deviation of the experimentally based coherence function from an exponential decay assumption. On the other hand, the present implementation of the Corcos model fails to capture certain nonturbulent boundary-layer-related environments, such as a subharmonic of FAH vortex shedding. For all methods presented in this paper, at near-transonic conditions, increased pressure coherence and spatial nonuniformity lead to BFF overestimation and sensitivity to the pressure measurement location within the panel.

Funder

National Aeronautics and Space Administration

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3