Active Flow Control in Compressor Cascades with Steady and Pulsed Jets

Author:

Chen Shaowen1,Yang Pengcheng1,Shi Yuchen1,Meng Qinghe1

Affiliation:

1. Harbin Institute of Technology, 150001 Harbin, People’s Republic of China

Abstract

This paper describes a detailed experimental investigation into the impact of steady and pulsed blowing on endwall secondary structures and losses in a compressor cascade. Owing to their high configuration flexibility, injection holes are integrated in the cascade sidewalls to manage the secondary flows. Loss reductions of 3.2 and 5.72% relative to the uncontrolled case are achieved by steady blowing with straight and optimized inclined holes, respectively. Superior loss reduction of 7.85% is obtained by pulsed blowing through inclined holes. To identify the secondary flow structures near the endwall and suction surfaces, a self-developed oil visualization method and spatial-spectral analysis are performed. Experimental results show that two concentrated shedding vortices exist in the cascade corner region. Loss reduction is achieved as the blowing suppresses the dominant vortex. Pulsed blowing intensifies the acceleration effect on the boundary layer, resulting in better performance with the same injection velocity. The impact of the pulse frequency on loss generation is investigated, and it is found that the optimal frequency is close to the shedding frequency of the dominant vortex in the cascade corner region.

Funder

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3