Integrated Three-Dimensional Airloads and Stresses on Lift-Offset Coaxial Rotors at Extreme Speeds

Author:

Patil Mrinalgouda,Datta Anubhav,Lumba Ravi,Jayaraman Buvana

Abstract

This paper investigates the three-dimensional (3-D) dynamic stresses on a modern four-bladed hingeless coaxial rotor—inspired by the gross dimensions of the Sikorsky S-97 Raider at extreme flight speeds. The stresses are obtained using integrated 3-D (I3D) aeromechanical analysis—defined as the coupling of 3-D finite element-based structural dynamics with 3-D Reynolds-averaged Navier–Stokes–based fluid dynamics. The coupling was carried out with the University of Maryland/U.S. Army structural dynamic solver X3D and the U.S. Army CREATETM–AV Helios suite of fluid dynamic solvers. The new structural analysis is both enabled and driven by advanced high-performance computing, parallel and scalable solvers, high-order 3-D brick finite elements unified with multibody dynamics, integrated aeromechanics, and a special 3D-to-1D fluid–structure interface that refines the power of the delta-coupling procedure while retaining the advantages of existing computational fluid dynamics mesh motion schemes. The analysis is carried out at 220 knots ([Formula: see text])—the cruise speed of the S-97 Raider without reduced tip speed—in order to study the stresses in extreme conditions. At such high speeds, the blade lift is dominated by the complex tip vortex roll-up, and the pitching moments and drag are dominated by the unsteady transonic shocks at the tip. Interesting 3-D dynamic stress patterns are revealed all across the blade that have remained invisible until now since they could neither be predicted nor measured in flight. The key conclusion is that such high-fidelity analysis is now indeed possible and, in fact, necessary to get deeper insights into the dynamics of coaxial rotors at extreme speeds.

Funder

Army/Navy/NASA Vertical Lift Research Center of Excellence

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3