Ship Air-Wake Identification from Experimental Data for Automatic Deck Landing and Takeoff

Author:

Vitale Antonio1ORCID,Corraro Gianluca1,Corraro Federico1,Gallas Quentin2

Affiliation:

1. Italian Aerospace Research Centre, 81043 Capua, Italy

2. ONERA–University of Toulouse, F-31410 Mauzac, France

Abstract

Ship air-wake modeling is a critical task needed to support the design and validation of algorithms that can assist a helicopter’s pilot during shipboard launch and recovery operations. In fact, these operations are often carried out in challenging conditions and impose a significant workload on the pilot. In this framework, the paper presents an air-wake model applicable for flight mechanics analyses and real-time simulations. The definition of the model is based on system identification methodologies applied to wind-tunnel experimental data. The main innovation of the approach consists of the definition of a modular structure of the model that allows setting up a multistep identification strategy and exploiting the most suitable technique for the estimation of each set of the model’s parameters. The validation of the obtained model highlighted a good capability to reproduce the air-wake flowfield in several flow conditions. The model was applied to test trajectory generation and tracking algorithms for helicopter automatic takeoff and landing on a ship deck.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3