Novel High-Precision and Efficient Momentum Source Method

Author:

Cao Tianshi1,Bai Junqiang1,Feng Shaodong1,Qiu Yasong1,Han Kai1

Affiliation:

1. Northwestern Polytechnical University, 710072 Xian, People’s Republic of China

Abstract

Effective and reliable slipstream numerical simulation methods are important for propeller-driven aircraft design. This paper presents a high-precision and efficient momentum source method (HPE-MSM) based on a novel actuator disk load prediction model established by the frozen rotor method and blade element momentum theory. The simulation results of two benchmark test cases of an isolated propeller and a typical turboprop airliner show that the accuracy of the HPE-MSM proposed in this paper is close to the time-averaged unsteady results of the sliding mesh method (SMM), with a maximum error of 5% in aircraft lift and drag coefficients compared with experimental values. Meanwhile, the calculation efficiency of the HPE-MSM is comparable to quasi-steady methods, with only about 3.4% of the computation resources of the SMM in the whole aircraft simulation. This novel approach achieves high-precision and efficient simulation of the slipstream, which has the potential to improve the design level of propeller-driven aircraft.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3