Liquid Oxygen/Gaseous Methane Single-Element Shear Coaxial Flame Dynamics

Author:

Roa Mario1,Talley Douglas G.2,Munipalli Ramakanth2

Affiliation:

1. Sierra Lobo, Inc., Edwards Air Force Base, California 93524

2. U.S. Air Force Research Laboratory, Edwards Air Force Base, California 93524

Abstract

An experimental study was conducted to visualize the dynamics and spectra of single-element shear coaxial liquid oxygen (LOX)/gaseous methane flames at high but still subcritical pressure for the LOX, and at supercritical temperature for the methane. High-speed shadowgraphs were employed to image and track the flame and jet dynamics close to the liquid oxygen’s post region. High-speed [Formula: see text] and [Formula: see text] chemiluminescence were also simultaneously collected along the same line of sight as the shadowgraphs. The results were compared to previous LOX/hydrogen results using the same injector at the same momentum flux ratios. The initial temperature of the methane was varied between 200 and 300 K. The LOX/methane flames were found to share many features in common with the LOX/hydrogen flames previously studied, but there were notable differences. The spreading rate of the LOX/hydrogen flames was larger than that of LOX/methane flames. The amplitude of the spreading rate fluctuations for hydrogen was also larger, although the relative spreading rate fluctuations normalized by the average spreading rates were about the same. Despite the differences, a wave amplification mechanism found previously to be active for shear coaxial LOX/hydrogen flames was found to also be active for LOX/methane flames. Overall, both the LOX/methane flames and the LOX/hydrogen were both found to be spectrally fairly quiet.

Funder

Air Force Office of Scientific Research

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3