Affiliation:
1. Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Abstract
Cellular materials widely exist in natural biologic systems such as honeycombs, bones, and woods. With advances in additive manufacturing, research on cellular metamaterials is emerging due to their unique mechanical performance. However, the design of on-demand cellular metamaterials usually requires solving a challenging inverse design problem for exploring complex structure–property relations of microstructured representative volume elements (RVEs) in the design domain. Here, we propose an experience-free and systematic methodology for exploring a parametrized system for microstructures of cellular mechanical metamaterials using a multiobjective genetic algorithm (GA). Globally, by considering the importance of the initial population selection for a population-based heuristic optimization method, we study the impact of the populations initialized by the different sampling methods on the optimal solutions. Locally, we develop our method by using a micro-GA with a new searching strategy, which requires the standard genetic algorithm to be conditionally run for a sufficient number of times with a small population size during the global searching process. We have applied our method to explore optimal solutions for applications mapped on two different parameter spaces of the cellular mechanical metamaterials with periodic and nonperiodic RVEs effectively and accurately.
Funder
National Science Foundation
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献