Aeroelastic Analysis Using Deforming Cartesian Grids

Author:

Boschitsch Alexander H.1,Whitehouse Glen R.1ORCID

Affiliation:

1. Continuum Dynamics, Inc., Ewing, New Jersey 08558

Abstract

Ongoing work in air-vehicle design illustrates the potential of advanced concepts to provide significant improvements in efficiency; but with their incorporation of lightweight flexible structures, such configurations may require active control systems to ensure reliability and safety. However, many contemporary analysis methods are inefficient for aeroelastic analysis and design of such configurations. This paper describes the development of a new approach that automates the geometry setup, mesh generation, and assembly of fluid–structural coupling interfaces to enable efficient aeroelastic and aeroservoelastic analysis of advanced concepts. The core elements for this approach are a cut-cell Cartesian grid-based computational fluid dynamics solver, a nonlinear beam element structural model, a conservative fluid–structural interface treatment, and the formulation and implementation of a new deforming grid capability within the cut-cell Cartesian grid solver. Herein, emphasis is on this latter component with detailed description given of the mesh motion strategy, evaluation of fluxes and structural loads at the surface, and computation of geometrical properties such as cell volume, directed face areas, centroids, and motion-induced fluxes for deforming Cartesian grids required to advance the flow states. Aeroelastic simulations exercising the capability show favorable agreement with data and predictions in the literature for subsonic and supersonic applications.

Funder

NASA

Department of Energy

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3