Affiliation:
1. Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114-3900
Abstract
The turbulent airwakes produced by a generic navy frigate (Simple Frigate Ship 2) was investigated in a low-speed wind tunnel. The frigate model was subjected to a headwind and immersed in a simulated atmospheric boundary layer. High-speed stereoscopic particle image velocimetry (PIV) was performed at six different spanwise planes over the flight deck. A spatio-temporal analysis of the PIV airwake measurements was conducted by applying the proper orthogonal decomposition (POD) to individual frequency bands of the airwake. Physical interpretations of the leading POD modes were substantiated by other complementary analyses. In particular, it was discovered that turbulent structures were shed from the funnel and superstructure edges. The flow recirculation region behind the superstructure exhibited a strongly three-dimensional bistable behavior. A pair of vortices near the stern also demonstrated low-frequency bistable dynamics. Notably, the bistable flow recirculation region appeared to influence or interact with the low-frequency behavior of the other major flow features.
Funder
Office of Naval Research, Defense University Research Instrumentation Program
Penn State Vertical Lift Research Center of Excellence
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献