Refined Semi-Analytical Framework to Predict the Natural Vibration Characteristics of Bistable Laminates

Author:

Anilkumar P. M.ORCID,Rao B. N.,Scheffler Sven,Wolniak MarleneORCID,Rolfes Raimund,Haldar Ayan1ORCID,Luc Jansen Eelco2

Affiliation:

1. Indian Institute of Technology (BHU), Varanasi 221 005, India

2. Rotterdam University of Applied Sciences, 3015 GG Rotterdam, The Netherlands

Abstract

Bistable unsymmetrical laminates have received significant attention in morphing applications due to their ability to attain multiple shapes when subjected to thermal loads. Morphing structures in general are subjected to dynamic operating conditions. Also, the highly nonlinear snap-through transition between stable configurations possesses rich dynamic characteristics. Therefore, understanding the dynamic characteristics of bistable laminates is essential for designing morphing structures constituting bistable elements. Thus, the present study aims to explore the dynamics of bistable unsymmetrical laminates by evaluating their natural vibration characteristics associated with small-amplitude dynamic excitation around the static equilibrium configurations. A refined semi-analytical framework is proposed to analyze the natural vibration characteristics of the bistable laminate, where the potential energy is expressed only in terms of the unknown coefficients of the assumed out-of-plane displacement function. The in-plane components are separately evaluated using the in-plane equilibrium equations and compatibility conditions. In the dynamic analysis, perturbations are imposed on the static equilibrium configurations to capture the modal characteristics. A full geometrically nonlinear finite element (FE) model of the bistable laminate has been created in a commercially available FE package to compare semi-analytical solutions. To validate the proposed frameworks, an experimental strategy to capture the natural frequencies of a bistable laminate is presented in this paper. Unsymmetric laminates mounted at its center have been used for the experimental testing, where the vibrations are measured using miniature integrated electronics piezoelectric accelerometer sensors attached at the corners. The semi-analytical and FE results are validated against the experimental observations for the selected unsymmetrical cross-ply laminates. The proposed frameworks are further extended to a family of unsymmetrical variable-stiffness (VS) laminates generated using curvilinear fiber alignments. The selected VS family can generate bistable shapes without any twisting curvature similar to that of an unsymmetrical cross-ply laminate, where the designer can expand the design space with a plethora of multiple configurations. A parametric study is performed by tailoring the VS parameters to investigate the influence of curvilinear fiber alignments on the natural vibration characteristics of bistable VS laminates.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3