Genetic-Algorithm-Guided Development of Parametric Aeroelastic Reduced-Order Models with State-Consistence Enforcement

Author:

Shu Jung I.,Wang Yi,Brown Alessandro,Kaminsky Andrew

Abstract

Data-driven parametric reduced-order models (ROMs) in state-space form are valuable tools for rapid aeroelastic (AE) analysis and aerostructure control synthesis. However, the issue of state inconsistence (significant variations in model parameters over tradespaces) makes ROMs noninterpolatable, and therefore unable to accommodate use over broad flight parameter space. This paper presents a holistic framework that combines a system identification technique with state-consistence enforcement (SCE) and a genetic algorithm (GA) for the automated development of interpolatable AE ROMs across broad flight regimes. The SCE technique introduces a regularization term to the AutoRegressive model with eXogenous inputs (ARX) to specifically penalize model parameter variation between flight conditions. The GA autonomously guides the ROM development process toward optimal SCE-ARX hyperparameter selection that balances between model parameter variations and ROM accuracy. The GA-guided SCE-ARX approach is applied to build a parametric AE-ROM database at selected flight conditions, which, because of its state consistence, can be interpolated to create ROMs at any interstitial conditions, where training data or ROMs are not initially available, hence rapidly establishing the full coverage of the entire parameter space. The ROMs generated by the proposed method are compared with those by ARX, SCE, and GA-guided ARX in prediction accuracy. The individual and combined effects of SCE and GA on model parameter variation and ROM interpolatability are thoroughly investigated. The present method demonstrates the most accurate and robust performance for parametric ROM construction across the broad flight envelope.

Funder

Langley Research Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3