Hybrid Systems Approach to Autonomous Rendezvous and Docking of an Underactuated Satellite

Author:

Soderlund Alexander A.1,Phillips Sean1ORCID

Affiliation:

1. Air Force Research Laboratory—Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117

Abstract

This work examines the autonomous rendezvous, proximity operations, and docking (ARPOD) problem wherein a “deputy” spacecraft must maneuver and dock with a “chief” spacecraft. This problem is challenging in that the deputy is modeled to be underactuated; thrust is only allowable along a single axial direction (its local [Formula: see text] axis) and rotation is only allowed about its local [Formula: see text] axis. Furthermore, the deputy’s coupled translational and attitudinal dynamics (modeled via the Clohessy–Wiltshire equations with inputs) do not allow local controllability about the equilibrium point when linearized. To solve this underactuated ARPOD problem, we design a periodic bimodal switching control law that drives the deputy to a docking configuration with the chief. We model the system to have hybrid (i.e., continuous and discrete) dynamics and recast the docking objective as a set stabilization problem. The main result of this work is a rigorous proof that leverages properties of geometric control, Floquet theory, and homogeneity to show that the switching control law renders the objective set to be locally asymptotically stable. Numerical simulations are provided to illustrate the main result.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Reference46 articles.

1. “ESA’S Annual Space Environment Report,” ESA Space Debris Office, European Space Agency GEN-DB-LOG-00288-OPS-SD, Darmstadt, Germany, April 2022.

2. JohnstoneA. “CubeSat Design Specification (1U-12U) Rev 14 CP-CDS-R14,” The CubeSat Program, Cal Poly SLO, July 2020, https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/62193b7fc9e72e0053f00910/1645820809779/CDS+REV14_1+2022-02-09.pdf.

3. LalB.De la Rosa BlancoE.BehrensJ.CorbinB.GreenE.PicardA.BalakdrishnanA., Global Trends in Small Satellites, IDA Science and Technology Policy Inst., Alexandria, VA, 2017, p. 400.

4. JewisonC. “Guidance and Control for Multi-Stage Rendezvous and Docking Operations in the Presence of Uncertainty,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2017.

5. Autonomous rendezvous using artificial potential function guidance

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3