Superior Al90Mg10-Based Composite Fuel Grain for a Hybrid Rocket Engine

Author:

Wang Zezhong1,Lin Xin1,Pan Junjie1,Luo Jiaxiao1,Wang Ruoyan1,Zhang Zelin1,Yu Xilong1

Affiliation:

1. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, People’s Republic of China

Abstract

A paraffin-based fuel coupled with a nested helical matrix structure is a low-cost, high-performing alternative for hybrid rocket engine applications. The mechanical and combustion properties of the composite fuel grain can be enhanced by replacing the conventional polymer matrix with a metal skeleton. Three-dimensional printing was used to design an Al90Mg10 skeleton embedded with the paraffin-based fuel. The combustion characteristics of the composite fuel grain, including the ignition behavior, pressure oscillations, regression rate, and combustion efficiency, were comprehensively investigated. The properties of grains with and without a secondary perforated structure were compared. The flame structure and metal burning behavior of the hybrid rocket engine were monitored by endoscopic radioluminescence imaging, and the emission spectral characteristics of the plume were analyzed simultaneously. Good flammability makes the Al90Mg10 helical skeleton a promising candidate for enhancing the combustion performance of a paraffin-based fuel grain. The combustion process with rapid ignition was relatively stable, and no additional pressure oscillation frequency was observed. The metal-based composite fuel grains had a superior regression rate to that of a paraffin-based fuel grain (up to 100% higher using the perforated skeleton). Introducing a secondary structure into the fuel grain promoted the reaction and thereby enhanced the combustion performance.

Funder

the Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

the Youth Innovation Promotion Association of CAS

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3