Validation of Models for Net Deployment and Capture Simulation with Experimental Data

Author:

Boonrath Achira1,Botta Eleonora M.1ORCID

Affiliation:

1. University at Buffalo, Buffalo, New York 14260

Abstract

This work validates lumped-parameter models and cable-based models for nets against data from a parabolic flight experiment. The capabilities of a simulator based in Vortex Studio, a multibody dynamics simulation framework, are expanded by introducing i) a lumped-parameter model of the net with lumped masses placed along the threads and ii) a flexible-cable-based model, both of which enable collision detection with thin bodies. An experimental scenario is recreated in simulation, and the deployment and capture phases are analyzed. Good agreement with experiments is observed in both phases, although with differences primarily due to imperfect knowledge of experimental initial conditions. It is demonstrated that both a lumped-parameter model with inner nodes and a cable-based model can enable the detection of collisions between the net and thin geometries of the target. While both models improve notably capture realism compared to a lumped parameter model with no inner nodes, the cable-based model is found to be most computationally efficient. The effect of modeling thread-to-thread collisions (i.e., collisions among parts of the net) is analyzed and determined to be negligible during deployment and initial target wrapping. The results of this work validate the models and increase the confidence in the practicality of this simulator as a tool for research on net-based capture of debris. A cable-based model is validated for the first time in the literature.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3