Analysis of Mars 2020 Entry Vehicle Aerothermal Flight Data

Author:

Edquist Karl T.,West Thomas K.,Mahzari Milad,Alpert Hannah S.ORCID

Abstract

The Mars 2020 entry vehicle’s thermal protection system included measurements of in-depth temperature on the heatshield and backshell, and surface heating on the backshell. This paper describes the flight data and resulting analysis: subsurface temperatures at 11 heatshield and 6 backshell locations, measured total heat flux at two backshell locations, and a radiometer on the backshell to measure shock layer radiation. All temperatures were within allowable material limits. Total surface heat flux was derived from the in-depth temperature measurements at the thermocouple locations. Turbulent boundary-layer conditions occurred at nine heatshield locations and the radiometer provided evidence that heating from shock layer radiation significantly exceeded convective heating on the backshell. Computational results on the reconstructed entry trajectory are compared to the flight data. After boundary-layer transition, total heat flux from algebraic turbulence model calculations qualitatively matches the reconstructed heating, but with lower peak magnitudes. On the backshell, laminar heat flux predictions generally exceed the as-flown values by less than [Formula: see text], with shock layer radiation predicted to contribute the majority of heating. At the radiometer location, the maximum predicted radiative heat flux exceeds the measurement, with the measured value likely suppressed by ablation products on the sapphire window.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3