A Database for Reduced-Complexity Modeling of Fluid Flows

Author:

Towne Aaron1ORCID,Dawson Scott T. M.2,Brès Guillaume A.3,Lozano-Durán Adrián4,Saxton-Fox Theresa,Parthasarathy Aadhy,Jones Anya R.,Biler Hulya,Yeh Chi-AnORCID,Patel Het D.,Taira Kunihiko5

Affiliation:

1. University of Michigan, Ann Arbor, Michigan 48109

2. Illinois Institute of Technology, Chicago, Illinois 60616

3. Cascade Technologies Incorporated, Palo Alto, California 94303

4. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

5. University of California, Los Angeles, California 90095

Abstract

We present a publicly accessible database specifically designed to aid in the conception, training, demonstration, evaluation, and comparison of reduced-complexity models for fluid mechanics. Availability of high-quality flow data is essential for all of these aspects of model development for both data-driven and physics-based methods. The current database is unique in that it has been curated with this need in mind. The database contains time-resolved data for six distinct datasets: a large eddy simulation of a turbulent jet, direct numerical simulations of a zero-pressure-gradient turbulent boundary layer, particle-image-velocimetry measurements for the same boundary layer at several Reynolds numbers, direct numerical simulations of laminar stationary and pitching flat-plate airfoils, particle-image-velocimetry and force measurements of an airfoil encountering a gust, and a large eddy simulation of the separated, turbulent flow over an airfoil. These six cases span several key flow categories: laminar and turbulent, statistically stationary and transient, tonal and broadband spectral content, canonical and application-oriented, wall-bounded and free-shear flow, and simulation and experimental measurements. For each dataset, we describe the flow setup and computational/experimental methods, catalog the data available in the database, and provide examples of how these data can be used for reduced-complexity modeling. All data can be downloaded using a browser interface or Globus. Our vision is that the common testbed provided by this database will aid the fluid mechanics community in clarifying the distinct capabilities of new and existing methods.

Funder

Air Force Office of Scientific Research

Office of Naval Research

Naval Air Systems Command

National Science Foundation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3