Low-Fidelity Approach for Contoured Nozzle Design

Author:

Jraisheh Ali1ORCID,Dudas Eszter2ORCID,Suas-David Nicolas2,Georges Robert2ORCID,Kulkarni Vinayak1

Affiliation:

1. Indian Institute of Technology Guwahati, Guwahati 781 039, India

2. Institute of Physics of Rennes, 35042 Rennes, France

Abstract

Creating a supersonic jet in the laboratory is both a challenging and an expensive task. The supersonic flow is sensitive to the shape of the wall bounding it because a shock could be developed at the sharp edges. Moreover, the growth of boundary layer, within and outside the nozzle, makes the design of a convergent–divergent nozzle a sophisticated work. The present work proposes an optimization algorithm that is believed to be efficient in constructing a nozzle contour to deliver a shock-free radially uniform flow at the exit plane. The steepest descent optimization technique is employed to obtain the shape with minimum radial velocity at the outlet, along with restriction on the inlet angle, i.e., the angle of divergence immediately downstream the throat. Three different ways of implementing the constraints are discussed and compared with the experimental results after fabricating the nozzle. The optimized nozzle shows a potential core of 7 throat diameters height at the nozzle exit and an axial extent of 28 throat diameters downstream the exit plane. Further, the nozzle appears to operate efficiently even after increasing the nominal total temperature by 25% or decreasing it by 50%.

Funder

Damascus University

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Altitude compensating ringed nozzle;Acta Astronautica;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3