Data-Driven Model to Predict Aircraft Vibration Environment

Author:

Février Stéphane1ORCID,Nachar Stéphane2,Mathelin Lionel1,Giordano Frédéric2,Podvin Bérengère3

Affiliation:

1. Université Paris-Saclay, CNRS, Laboratoire interdisciplinaire des sciences du numérique, 91405 Orsay, France

2. Dassault Aviation, France

3. Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France

Abstract

Vibration levels that onboard equipment must be able to withstand throughout their lives for correct operation are mainly determined experimentally because predicting the dynamic behavior of a complete aircraft requires computational means and methods that are currently difficult to implement. We present a data-driven methodology that leverages flight-test accelerometer data to produce a predictive model. This model, based on an ensemble of artificial neural networks, performs a multioutput multivariate regression to estimate vibration spectra from a set of aircraft general parameters without having to characterize excitation sources. The model is compared with baseline models over two protocols, which are 1) standard training and testing as well as 2) extrapolation to high dynamic pressures, in order to assess physical consistency. Although the first protocol shows that all models can produce results accurate enough for this context, the second protocol shows that only the ensemble model is able to correctly extrapolate the energy. Using the Shapley additive explanations method, also known as SHAP, we show that these results can be explained by the ability of our model to identify the dynamic pressure as the core feature used in the extrapolation protocol. The proposed model can be used in multiple applications, such as anomaly detection and vibration flight envelope opening.

Funder

CNRS and Dassault Aviation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3