Innovative Framework for Robustness Analysis of Blade Multicavity Squealer Tip Aerothermal Performance

Author:

Huang Ming1,Zhang Kaiyuan1,Li Zhigang1,Li Jun1

Affiliation:

1. Xi’an Jiaotong University, 710049 Xi’an, People’s Republic of China

Abstract

Gas turbines are subject to various geometric and operational uncertainties, which are often overlooked in conventional research. Therefore, conclusions derived from a deterministic approach may not accurately reflect the actual gas turbine operation. To address this issue, this paper presents an effective uncertainty quantification framework for evaluating the aerothermal performance robustness of the multicavity squealer tip. Moreover, a novel visualization method is developed to analyze the uncertainty flow and thermal fields. The findings suggest that conventional research tends to overestimate the aerodynamic performance of the multicavity squealer tip. The installation of ribs can exacerbate the chaotic tendency of the flowfield, leading to a significant reduction in the aerodynamic performance robustness of the squealer tip during actual operation. However, the heat transfer performance robustness of the multicavity squealer tip is substantially enhanced due to the inability of the flowfield uncertainty to transfer to the thermal field through the ribs. Furthermore, the study reveals high heat flux fluctuations in the region near the ribs root, which highlights the importance of considering thermal fatigue risks in the design of multicavity squealer tips.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3