Affiliation:
1. Iowa State University, Ames, Iowa 50011
2. Mississippi State University, Mississippi State, Mississippi 39762
Abstract
We evaluate two leading-edge-based dynamic stall-onset criteria (namely, the maximum magnitudes of the leading-edge suction parameter and the boundary enstrophy flux) for mixed and trailing-edge stall. These criteria have been shown to successfully predict the onset of leading-edge stall at Reynolds numbers of [Formula: see text], where the leading-edge suction drops abruptly. However, for mixed/trailing-edge stall, leading-edge suction tends to persist even when there is significant trailing-edge reversed flow and stall is underway, necessitating further investigation into the effectiveness of these criteria. Using wall-resolved large-eddy simulations and the unsteady Reynolds-averaged Navier–Stokes method, we simulate one leading-edge stall and three mixed/trailing-edge stall cases at Reynolds numbers of [Formula: see text] and [Formula: see text]. We contrast the progression of flow features such as trailing-edge separation and vortex formation across different stall types and evaluate the stall-onset criteria relative to critical points in the flow. We find that the criteria nearly coincide with the instance of leading-edge suction collapse and are reached in advance of dynamic stall vortex formation and lift stall for all four cases. We conclude that the two criteria effectively signal dynamic stall onset in cases where the dynamic stall vortex plays a prominent role.
Funder
National Science Foundation
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献