Evaluating Dynamic Stall-Onset Criteria for Mixed and Trailing-Edge Stall

Author:

Sudharsan Sarasija1ORCID,Narsipur Shreyas2ORCID,Sharma Anupam1ORCID

Affiliation:

1. Iowa State University, Ames, Iowa 50011

2. Mississippi State University, Mississippi State, Mississippi 39762

Abstract

We evaluate two leading-edge-based dynamic stall-onset criteria (namely, the maximum magnitudes of the leading-edge suction parameter and the boundary enstrophy flux) for mixed and trailing-edge stall. These criteria have been shown to successfully predict the onset of leading-edge stall at Reynolds numbers of [Formula: see text], where the leading-edge suction drops abruptly. However, for mixed/trailing-edge stall, leading-edge suction tends to persist even when there is significant trailing-edge reversed flow and stall is underway, necessitating further investigation into the effectiveness of these criteria. Using wall-resolved large-eddy simulations and the unsteady Reynolds-averaged Navier–Stokes method, we simulate one leading-edge stall and three mixed/trailing-edge stall cases at Reynolds numbers of [Formula: see text] and [Formula: see text]. We contrast the progression of flow features such as trailing-edge separation and vortex formation across different stall types and evaluate the stall-onset criteria relative to critical points in the flow. We find that the criteria nearly coincide with the instance of leading-edge suction collapse and are reached in advance of dynamic stall vortex formation and lift stall for all four cases. We conclude that the two criteria effectively signal dynamic stall onset in cases where the dynamic stall vortex plays a prominent role.

Funder

National Science Foundation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference38 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3