Package Innovation Roadmap

Author:

Schmidt Christian1,Li Yan2,Zee Bernice3,Agny Rohin4,Parente Renee3,Brand Sebastian5,Kögel Michael5,Altmann Frank5

Affiliation:

1. Nvidia

2. Samsung Semiconductor, Inc.

3. Advanced Micro Devices

4. NXP Semiconductors

5. Fraunhofer Institute for Microstructure of Materials and Systems IMWS

Abstract

Abstract This chapter assesses the potential impact of neural networks on package-level failure analysis, the challenges presented by next-generation semiconductor packages, and the measures that can be taken to maximize FA equipment uptime and throughput. It presents examples showing how neural networks have been trained to detect and classify PCB defects, improve signal-to-noise ratios in SEM images, recognize wafer failure patterns, and predict failure modes. It explains how new packaging strategies, particularly stacking and disintegration, complicate fault isolation and evaluates the ability of various imaging methods to locate defects in die stacks. It also presents best practices for sample preparation, inspection, and navigation and offers suggestions for improving the reliability and service life of tools.

Publisher

ASM International

Reference27 articles.

1. Artificial Intelligence vs. Machine Learning vs. Deep Learning;Oppermann,2019

2. “A Gentle Introduction to Machine Learning,” 2019. [Online]. Available: https://towardsdatascience.com/a-gentle-introduction-to-machine-learning-599210ec34ad.

3. Machine learning based data and signal analysis methods for the application in failure analysis;Kögel;Proceedings from the 47th International Symposium for Testing and Failure Analysis (ISTFA, ASM International),2021

4. Deep Learning-Based Wafer-Map Failure Pattern Recognition Framework;Ishida;20th International Symposium on Quality Electronic Design (ISQED),2019

5. Report Classification for Semiconductor Failure Analysis;Frederik;Proceedings from the 47th International Symposium for Testing and Failure Analysis (ISTFA, ASM International),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3