Fretting and Corrosion in Aircraft Components

Author:

Shah Jivan B.1

Affiliation:

1. Failures Analyst, Ministry of Transport, Civil Aeronautics Branch, Canadian Air Transportation Administration, Aircraft Accident Investigation Div., Engineering Laboratory

Abstract

Abstract Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.

Publisher

ASM International

Reference2 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3